PDE I MTH 847 QUALIFYING EXAM January 2, 2020

Name: $\qquad$ Signature: $\qquad$
Write clearly and coherently! Show all your work! This is a closed book exam, notes, electronic devices, cell phones, etc., can not be used. You can use a $4 \times 6$ index card. Read all problems through once before beginning your work. Problem 7 is optional for extra credit.

| Problem | Points |
| :---: | :---: |
| 1. |  |
| 2. |  |
| 3. |  |
| 4. |  |
| 5. |  |
| 6. |  |
| 7. |  |
| Total: |  |

Problem 1. [10 points] Find the solution of the following initial value problem for the transport equation

$$
u_{t}+b \cdot D u+c u=f \text { in } \mathbf{R}^{n} \times(0, \infty), u=g \text { on } \mathbf{R}^{n} \times\{t=0\}
$$

Here $c \in \mathbf{R}, b \in \mathbf{R}^{n}$ are constants, $f(x, t)=e^{t}, g(x)=|x|^{2}$.

Problem 2. [10 points] Let $\mathbf{B}(0,1)=\left\{x \in \mathbf{R}^{2}:|x|<1\right\}$ be the open unit ball. (a) Find the solution of the boundary value problem

$$
\left\{\begin{aligned}
\Delta u & =0 & & \text { in } \mathbf{B}(0,1) \\
u(x) & =4 x_{1}^{2}-4 x_{1}+2 x_{2}^{2} & & \text { on } \partial \mathbf{B}(0,1) .
\end{aligned}\right.
$$

(b) Find the value $u(0)$.
(c) Find $\max \{u(x), x \in \overline{\mathbf{B}(0,1)}\}$ and $\min \{u(x), x \in \overline{\mathbf{B}(0,1)}\}$.
(d) Is there a point $x \in \mathbf{B}(0,1)$ such that $u(x)=0$ ?

Problem 3. [10 points] (a) Let $a$ be a number, $0<a<1$. Consider the set

$$
A=\left\{(x, t) \in \mathbf{R}^{n} \times(0, \infty):|x| \geq 1,0<t<a\right\}
$$

Prove that the wave equation

$$
u_{t t}-\Delta u=0, \quad \text { in } \mathbf{R}^{n} \times(0, \infty)
$$

has a solution $u \in C^{2}\left(\mathbf{R}^{n} \times(0, \infty)\right)$ that is not identically zero, but vanishes on the set $A$.
(b) Consider the initial value problem for the $n=3$ dimensional wave equation

$$
u_{t t}-\Delta u=0, \quad \text { in } \mathbf{R}^{3} \times(0, \infty), \quad u=0, \quad u_{t}=h \text { on } \mathbf{R}^{3} \times\{t=0\}
$$

The function $h \in C_{c}^{\infty}\left(\mathbf{R}^{3}\right)$ satisfies the conditions that $0 \leq h(x) \leq 1$ for all $x \in \mathbf{R}^{3}$, $h(x)=1$ if $|x| \leq 1$ and $h(x)=0$ if $|x| \geq 2$. Calculate the values of $u(x, t)$ at the points $\left(0,0,0, \frac{1}{2}\right),(0,0,0,3),(6,0,0,4)$, and the value of $u_{t}(x, t)$ at $\left(0,0,0, \frac{1}{2}\right)$.

Problem 4. [10 points] Solve the mixed initial-boundary value problem for the wave equation in one dimension

$$
\begin{cases}u_{t t}=u_{x x}, & x>0, t>0 \\ u(x, 0)=g(x), u_{t}(x, 0)=0, & x>0 \\ u_{t}(0, t)=4 u_{x}(0, t) & t>0\end{cases}
$$

where the function $g \in C^{2}\left(\mathbf{R}_{+}\right)$vanishes near $x=0$.

Problem 5. [10 points] Let $U$ be a bounded open set in $\mathbf{R}^{n}$ with $C^{1}$ boundary. The time $T>0$ is given Let $U_{T}=U \times(0, T]$, and $\Gamma_{T}=\overline{U_{T}}-U_{T}$. Let $q \in C(U)$ be a nonnegative function and $f \in C\left(U_{T}\right), g \in C\left(\Gamma_{T}\right)$. Consider the boundary value problem

$$
\left\{\begin{aligned}
u_{t}-\Delta u+q(x) u & =f & & \text { in } U_{T} \\
u & =g & & \text { on } \Gamma_{T} .
\end{aligned}\right.
$$

Prove that there is at most one solution $u \in C^{2,1}\left(\overline{U_{T}}\right)$ of this boundary value problem.

Problem 6. [10 points] Let $f \in C\left(\mathbf{R}^{n} \times[0, \infty)\right)$ and $g \in C\left(\mathbf{R}^{n}\right)$ be bounded functions.
(1) Prove that there is a solution of the nonhomogeneous heat equation

$$
u_{t}-\Delta u=f \text { in } \mathbf{R}^{n} \times(0, \infty), \quad u(x, 0)=g(x) \text { on } \mathbf{R}^{n}
$$

satisfying the estimate

$$
|u(x, t)| \leq \sup \left\{|g(y)|: y \in \mathbf{R}^{n}\right\}+t \sup \left\{|f(y, s)|: y \in \mathbf{R}^{n}, 0 \leq s \leq t\right\}
$$

using Duhamel's principle.
(2) Prove that there is a bounded solution $u$ if $|f(x, t)| \leq \frac{1}{1+t^{2}}$ for all $(x, t) \in$ $\mathbf{R}^{n} \times[0, \infty)$.

Problem 7. [10 points] Problem 7 is optional for extra credit.
Use the method of characteristics to solve the first order equation

$$
\left(u_{x_{1}}\right)^{2}+2 x_{2}^{2} u_{x_{2}}=1, \quad\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2}
$$

with the condition

$$
u\left(x_{1}, 1\right)=\frac{x_{1}^{2}}{2}, x_{1} \in \mathbf{R}
$$

